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A hierarchy of low-dimensional Galerkin models is proposed for the viscous,
incompressible flow around a circular cylinder building on the pioneering works
of Stuart (1958), Deane et al. (1991), and Ma & Karniadakis (2002). The empirical
Galerkin model is based on an eight-dimensional Karhunen–Loève decomposition of a
numerical simulation and incorporates a new ‘shift-mode’ representing the mean-field
correction. The inclusion of the shift-mode significantly improves the resolution of
the transient dynamics from the onset of vortex shedding to the periodic von Kármán
vortex street. In addition, the Reynolds-number dependence of the flow can be
described with good accuracy. The inclusion of stability eigenmodes further enhances
the accuracy of fluctuation dynamics. Mathematical and physical system reduction
approaches lead to invariant-manifold and to mean-field models, respectively. The
corresponding two-dimensional dynamical systems are further reduced to the Landau
amplitude equation.

1. Introduction
In the current study, low-dimensional models are developed for the example

of a cylinder wake. Low-dimensional modelling of incompressible flows plays an
increasingly important role in academic and industrial research. Reduced flow models
are a good test-bed for the understanding of the key physical processes, allow quick
exploratory actuation studies, and enable the application of methods of control and
dynamical systems theory. Thus, these coherent-structure descriptions fill the gap in
the theoretical spectrum between analytical theory and high-dimensional accurate
simulations. The mathematical foundation of many low-dimensional models was laid
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about a hundred years ago with Galerkin models (see for example Holmes, Lumley &
Berkooz 1998) and vortex methods (see for example Cottet & Koumoutsakos 2000).

The flow around a circular cylinder has been under active investigation for more
than one hundred years. This configuration represents a paradigm of wakes as one
of the major flow categories. Despite its simple geometry, the flow exhibits a rich
kaleidoscope of phenomena (see for example Williamson 1996; Noack 1999a, b) and
has served as a benchmark problem for many fluid-dynamics methods. In the present
study, focus is placed on the two-dimensional, laminar flow with periodic vortex
shedding.

Low-dimensional vortex models have successfully described qualitative properties
of the cylinder wake, such as the steady solution by Föppl (1913) and its stabilization
by Tang & Aubry (2000). Galerkin methods are the natural candidate to describe
the globally synchronized dynamics, like the vortex shedding in the near wake
(Rempfer 2003). The dimension and properties of the resulting Galerkin model
strongly depend on the choice of the expansion modes in the Galerkin approximation.
The approximation may be classified in terms of mathematical, physical, and empirical
approaches.

Mathematical modes are derived as a complete countable set of orthonormal fields
in a suitable Hilbert space. These modes fulfil the incompressibility condition and
the boundary condition. The dimension of Galerkin systems with reasonable
quantitative accuracy is easily of the order of hundreds (Noack & Eckelmann 1994a , b)
for the laminar and transitional regime or even up to a thousand (Zebib 1987) for a
more accurate resolution. Practically all mathematical Galerkin models are based on
the carrier-field ansatz with two generalized stream functions and are hence restricted
to simple geometries with nominally one- or two-dimensional boundary conditions.

Physical modes also satisfy some Navier–Stokes related eigenvalue problems.
Examples are Stokes modes (Rummler 2000), singular Stokes modes (Batcho 1994;
Kevrekidis et al. 1997) and eigenmodes of the linearized Navier–Stokes equations
(Jackson 1987; Zebib 1987; Morzyński, Afanasiev & Thiele 1999). This leads to the
hope of a reduction of the system dimension by incorporating some properties of
the Navier–Stokes equation. This approach has proven successful for construction of
low-dimensional models of internal flows (Rummler 2000). However, our experience
with the wake flow is not very encouraging (Afanasiev 2003).

Empirical modes can be derived from a reference Navier–Stokes solution in
an arbitrarily complex domain. The Karhunen–Loève decomposition is the most
prominent example (see for example Holmes et al. 1998). In a pioneering study,
Deane et al. (1991) have reproduced the dynamics of the laminar cylinder wake with
a mere eight-dimensional empirical Galerkin model. In another landmark work by
Ma & Karniadakis (2002), these models have been generalized to three-dimensional
transition. Indeed, empirical Galerkin models provide very efficient representations of
the reference dynamics, mostly with higher accuracy than mathematical and physical
Galerkin models while employing fewer modes.

The price of this low-dimensionality is a lack of robustness away from the reference
simulation, e.g. the restriction to a narrow range of Reynolds numbers. Deane et al.
(1991) note that ‘the accuracy of the model predictions rapidly deteriorate as we move
away from the decomposition value’. In contrast, the mathematical Galerkin model
by Noack & Eckelmann (1994a) describes the complete C-mode transition scenario
(Karniadakis & Triantafyllou 1992; Zhang et al. 1995) from Reynolds numbers
between one and 300. The maximum accuracy of the mathematical approach is not
comparable with empirical models near the reference conditions. The mathematical
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model also incorporates actuation effects, like cylinder rotation and translation
(Hu et al. 1996). Alternatively, Afanasiev & Hinze (2001) employ an empirical
Galerkin model for optimal complete-information control of the cylinder wake
with a volume force. Here, the optimal actuation is determined from the low-
dimensional Galerkin model based on the Karhunen–Loève decomposition of an
actuated simulation in an iteration procedure.

The goal of the present study is to combine the strengths of empirical and
mathematical Galerkin models with a hybrid approach. The proposed generalized
Galerkin model exploits the excellent accuracy of the empirical approach for the
reference condition and enhances the range of applicability and robustness due
to ingredients of mathematical Galerkin models. The robustness is found to play
an important role in system-reduction approaches, in the model-based prediction
of actuation effects, and in controller design (Gerhard et al. 2003). In a similar
spirit, another hybrid Galerkin model from empirical and physical modes has been
developed for flexible walls (Rempfer et al. 2003).

The manuscript is organized as follows. A challenge arising from empirical Galerkin
methods is exemplified by a model system in § 2. This consideration motivates a
hierarchy of generalized empirical Galerkin models in § 3. Generalized and reduced
Galerkin models of the cylinder wake are then described in § 4 and § 5, respectively.
Finally, the main findings and their implications for other flows are outlined in § 6.

2. A challenge arising from empirical Galerkin methods
In this section, a generalization of the empirical Galerkin method and some system-

reduction approaches are motivated by considering a three-dimensional system of
ordinary differential equations. In § 2.1, this dynamical system is described. In § 2.2,
the standard empirical Galerkin method based on Karhunen–Loève modes is shown
to yield a structurally unstable Galerkin system. In § 2.3, the amplitude-selection
mechanism is discussed. The last subsection concludes with a suggested generalization
of the Galerkin method which is pursued for periodic wake flows.

2.1. Model system

By construction, the empirical Galerkin model approximately accommodates the
attractor provided that the residual of the Galerkin approximation is small enough.
In this case, the solution is expected to stay close to the true attractor for some
period of time. However, arbitrarily small perturbations of the Galerkin model may
lead to large deviations of the Galerkin solution from the Navier–Stokes solution. To
illustrate this possibility, a three-dimensional model system is considered,

d

dt
u = µu − v − uw, (2.1a)

d

dt
v = µv + u − vw, (2.1b)

d

dt
w = −w + u2 + v2. (2.1c)

Throughout this section, µ = 1/10.
The model system has an unstable fixed point at the origin us := (us, vs, ws) = 0

and a stable periodic solution which defines a limit cycle of radius
√

µ in the w = µ

plane,

u =
√

µ cos t, v =
√

µ sin t, w = µ. (2.2)
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This limit cycle is asymptotically and globally stable. Thus, the system has similar
dynamics to the laminar periodic flow around a circular cylinder with an unstable
steady solution and stable periodic vortex shedding. Moreover, the system has a
quadratic nonlinearity, like the Navier–Stokes equation.

2.2. Structural instability of the empirical Galerkin system

The Karhunen–Loève decomposition of the periodic solution (2.2) leads to

u[2] := u0 + a1u1 + a2u2, (2.3)

with the average value u0 := (0, 0, µ), as a counterpart of the mean flow, and the
Karhunen–Loève modes u1 := (1, 0, 0), u2 := (0, 1, 0). The Galerkin approximation
(2.3) describes the solution (2.2) exactly with the Fourier coefficients a1 =

√
µ cos t ,

a2 =
√

µ sin t , and spans only the two-dimensional plane w =µ within the entire, three-
dimensional state space. For later reference, this plane shall be called the Karhunen–
Loève space. The loss of state-space dimensions (here, a drop by one dimension) is
associated with unresolved eigenvectors of vanishing empirical eigenvalues (see for
instance Holmes et al. 1998).

In a Galerkin projection, (2.3) is substituted in the model system (2.1) and projected
on u1, u2 using the standard Euclidean inner product. The resulting equation
describes a marginally stable centre around (a1, a2) = (0, 0) without preference for
any amplitude,

d

dt
a1 = −a2,

d

dt
a2 = a1. (2.4)

Evidently, an arbitrarily small perturbation of the autonomous system, such as
da1/dt = εa1 −a2, da2/dt = εa2+a1, may give rise to exploding, vanishing, or otherwise
incorrect solutions of the system. Hence, the Galerkin system (2.4) is structurally
unstable (see for instance the definition in Guckenheimer & Holmes 1986, § 1.7).

In the above example, the Galerkin approximation is exactly valid but the resulting
empirical Galerkin model has, nevertheless, incorrect attractors. A similar result has
been obtained by Rempfer (2000) in another dynamical system. Here, the empirical
Galerkin method even gives rise to an unstable Galerkin attractor – in contrast to
the stable attractor of the original system.

2.3. Amplitude-selection mechanism

The two-dimensional Galerkin model (2.4) conserves the initial amplitude A =√
x2 + y2 and fails to predict any transient. In the original system, the transient

trajectory quickly approaches the manifold w = u2 + v2 and spirals outwards on the
paraboloid. Figure 1 displays such a trajectory which starts in the plane of the limit
cycle at (0.001, 0, 0.1). Evidently, the Karhunen–Loève decomposition (2.3) does not
resolve the third dimension in the model (2.1). This third phase-space direction is
spanned by the mean-field correction, i.e. the difference between the averaged attractor
(0, 0, µ) and the steady solution 0.

The mean-field correction plays a major role in the transient dynamics. This role
can be assessed by re-writing the model system (2.1) in the form

d

dt
u = σwu − v, (2.5a)

d

dt
v = σwv + u, (2.5b)

d

dt
w = −w + u2 + v2, (2.5c)
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Figure 1. Solution of the model problem (2.1) starting from the initial condition (0.001,
0, 0.1). The figure displays the u, v- (a) and the u,w-phase portraits (b) of the trajectory.

where σw := µ − w can be interpreted as a growth rate of the oscillation amplitude
A :=

√
u2 + w2 in the plane w = const. This interpretation is corroborated by re-

writing (2.5) in cylindrical coordinates using φ = arctan(v/u),

d

dt
A = σwA, (2.6a)

d

dt
φ = 1, (2.6b)

d

dt
w = −w + A2. (2.6c)

The oscillation amplitude increases ‘below’ the limit cycle w < µ, since σw > 0, and
decreases above the limit cycle (see figure 2). The growth rate σw characterizes the
dynamics in every two-dimensional plane of the phase space with a ‘frozen’ w. Figure 3
displays these cuts containing the fixed point, the limit cycle and a point in the stable
regime.

The limit cycle is determined by dA/dt = dw/dt = 0, or, equivalently, by σw =
µ − w = 0 and w = A2. The latter equation defines a paraboloid in phase space.
The paraboloid plays an important role not only for the limit cycle but also for the
transients. The numerical solutions in figures 1 and 2 quickly approach this paraboloid.
This behaviour can be derived from (2.6) using a small-parameter argument. The
growth rate associated with the oscillation amplitude is σw := µ − w. For a transient
from the fixed point to the limit cycle, this growth rate is in the interval 0 � σw � 0.1,
i.e. it is ‘small’ and positive. In contrast, the linearized dynamics of the w-direction
are described by dw/dt = −w, i.e. the w-direction is stable and has a time scale which
is at least one order of magnitude smaller than the time scale of the oscillation-
amplitude dynamics. Hence, the slaving principle (see for instance Haken 1983)
suggests replacing the differential equation (2.6c) by an algebraic equation derived
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0.2

0.1

0

–0.4 –0.2 0 0.2 0.4
u

w

(a) (b)

–0.1 0.10
�w

Figure 2. Solutions of the model system (a) and growth rate σw as functions of w (b). In
(a) the u,w-phase portrait of two transient solutions approaching the limit cycle from initial

conditions u = (
√

0.2, 0, 0.2) and u = (0.001, 0, 0) is displayed.
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Figure 3. Solutions of the two-dimensional model system (2.1a, b) in the (u, v)-plane with
the third coordinate frozen at (a) w = 0, (b) w = µ, and (c) w = 2µ.

from dw/dt = 0. Thus,

d

dt
A= σwA, w = +A2. (2.7)

The paraboloid w = A2 is also a second-order centre-manifold expansion around
u = 0 and µ = 0 (see for instance Copeland & Noack 2000). In addition, the
restriction of the dynamics to the paraboloid can also be derived from mean-field
theory (see for instance Noack & Copeland 2000).

The nonlinear dynamics of the oscillation amplitude are derived from (2.7) by
eliminating w. This elimination leads to the well-known Landau equation,

d

dt
A= µA − A3. (2.8)

It is important to note that the amplitude-selection mechanism described by the
Landau equation cannot be obtained within the marginally stable Karhunen–Loève
space, but is closely linked to the paraboloid. The marginal stability of the averaged
model solution has also been theoretically conjectured and numerically shown for a
large class of laminar and turbulent shear flow (Noack & Bertolotti 2000).

The model system exemplifies both a challenge and an enhancement of the empirical
Galerkin method. The challenge rests in the well-known fact that possibly important
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phase directions are not resolved in the Karhunen–Loève decomposition of the post-
transient flow. As a remedy to this situation, the model system suggests including the
mean-field direction in a generalized Karhunen–Loève decomposition. This ansatz is
pursued in the next section for the wake flow.

3. Hierarchy of generalized Galerkin models
In this section, a hierarchy of flow models is proposed. This hierarchy ranges from a

direct numerical simulation to an amplitude equation. In § 3.1, the flow configuration
and direct numerical simulation are described. In § 3.2, the generalized Galerkin model
is proposed. Mathematical and physical system-reduction approaches are described
in § 3.3 and § 3.4, respectively. These reduced-order models enable the derivation of
an amplitude equation for transient dynamics.

3.1. Navier–Stokes simulation

In this subsection, the initial boundary value problem for the incompressible flow is
formulated and the corresponding Navier–Stokes solver is outlined.

The two-dimensional flow is described in a Cartesian coordinate system, x, y, where
the x-axis is aligned which has oncoming flow and the y-axis is perpendicular to this
direction. The origin is in the centre of the cylinder which has diameter D. Location
is denoted by a vector x = (x, y), and time by t . The velocity vector is u = (u, v),
where u and v are the components in the x- and y-direction, respectively. Pressure is
denoted by p. In the following, all variables are assumed to be non-dimensionalized
with respect to the cylinder diameter D and the oncoming flow U .

The evolution of the flow is described by the incompressibility condition and the
Navier–Stokes equation,

∇ · u = 0, (3.1a)

∂t u + ∇ · (u u) = −∇p +
1

Re
�u, (3.1b)

where Re =UD/ν represents the Reynolds number with kinematic viscosity ν.
The standard notation of tensor algebra is employed for multiplication and for
differentiation, e.g. u v denotes the outer product between the vectors u, v leading to
a matrix, ‘·’ is a single contraction, ∇ denotes the Nabla operator, and � represents
the Laplace operator.

The computational domain Ω for the flow is the exterior of the cylinder x2 + y2 �
(1/2)2 in the rectangle −5 � x � 15, −5 � y � 5. The boundary condition consists
of a no-slip condition at the cylinder, a uniform free-stream condition at the inflow
u = 1, v = 0, the same condition at the transverse boundaries, and a stress-free
outflow condition σ · n = 0 with the stress tensor σij = −pδij + Re−1(∂jui + ∂iuj ) and
the outflow direction n.

Targeting more complex geometries, the flow is discretized as finite elements on
a triangular mesh. The corresponding grid is shown in figure 4. The finite-element
Navier–Stokes solver is third-order accurate in space and time and based on a pseudo-
pressure formulation (see for instance Fletcher 1988, § 17.2). The average lengths of
the triangular mesh elements are 0.058 near the cylinder, 0.066 on the wake centreline
x > 0.5, y = 0, and 0.104 in the whole domain. Each mesh element is subdivided in
four similar subtriangles the vertices of which serve as nodes for the flow variables.
The Navier–Stokes solver has been employed in numerous investigations including the



342 B. R. Noack, K. Afanasiev, M. Morzyński, G. Tadmor and F. Thiele

Figure 4. Computational grid in Ω .

flow around a circular cylinder. Details of the solver are provided in other references
(Afanasiev 2003; Gerhard 2003; Morzyński 1987; and the references therein).

The chosen domain size and discretization order is, on the one hand, large enough
for a good accuracy, and on the other hand, small enough to allow the computationally
challenging global linear stability analysis which is performed on the same grid. The
numerical computation of the Galerkin model has the same order of accuracy as the
simulation.

3.2. Generalized empirical Galerkin model

In this section, a generalization of the empirical Galerkin method is proposed.
A standard empirical Galerkin model is based on a Karhunen–Loève expansion of

the reference simulation (see for example Holmes et al. 1998). In this decomposition,
the flow u is approximated by a finite Galerkin approximation u[N],

u(x, t) ≈ u[N] := u0(x) +

N∑
i=1

ai(t) ui(x), (3.2)

where u0 represents the mean flow, {ui}N

i=1 the first N Karhunen–Loève modes, and
ai the time-dependent Fourier coefficients. The coefficients are expressed by

ai = (u − u0, ui)Ω,

where (v, w)Ω :=
∫

Ω
dAv · w represents the inner product between two solenoidal fields

v, w on the computational domain Ω . For later reference, the norm ‖v‖Ω :=
√

(v, v)Ω
is introduced.

In the current study, the Karhunen–Loève modes are computed with a snapshot
method from about 100 snapshots of a periodic reference simulation at Re =100.
The snapshots are sampled uniformly in one period. Deane et al. (1991) observe
that as few as 20 snapshots are sufficient for the construction of the first eight
eigenmodes. Figure 5 displays the first eight Karhunen–Loève modes. The modes ui

with i = 1, 2, 5, 6 are anti-symmetric with respect to the x-axis,

ui(x, −y) = −ui(x, y), (3.3a)

vi(x, −y) = +vi(x, y), (3.3b)

whereas the remaining modes are symmetric,

ui(x, −y) = +ui(x, y), (3.4a)

vi(x, −y) = −vi(x, y). (3.4b)
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i = 1 i = 2

i = 3 i = 4

i = 5 i = 6

i = 7 i = 8

Figure 5. Karhunen–Loève decomposition at Re= 100. The flow field of the first eight
Karhunen–Loève modes, ui , i = 1, 2, . . . , 8, is visualized by iso-contour lines of the stream
function. Positive (negative) values are indicated by thick (thin) lines. The cylinder is represented
by the solid circle.

The mean flow and steady solution belong to the latter class. It should be noted that
the velocity components u and v have opposite symmetry properties. The symmetry
of the mode stated above refers only to its u-component — following a convention of
linear stability analysis (see for instance Sato 1960).

The modes can be grouped as pairs (u1, u2), (u3, u4), (u5, u6), (u7, u8), etc. with
alternating symmetry properties. Moreover, the nth pair approximately resolves the
nth harmonics. This behaviour can be inferred from the Lissajous figures in earlier
studies (Deane et al. 1991; Ma & Karniadakis 2002).

The energy in the ith Karhunen–Loève mode is quantified by the Karhunen–Loève
eigenvalue

λi =
〈
(u − u0, ui)

2
Ω

〉
=

〈
a2

i

〉
, (3.5)

where 〈 〉 represents the time average of the quantity within, and λi/2 can be considered
as the kinetic energy of the ith mode. Figure 6 displays the dominant part of the
Karhunen–Loève spectrum at three Reynolds numbers. The two modes of each pair
have similar energy, and the decay of energy from one pair to the next is approximately
in a geometric progression. This behaviour is consistent with an asymptotic theory
by Dus̆ek, Le Gal & Fraunie (1994) and Dus̆ek (1996). This theory predicts a nearly
constant amplitude ratio between the (n + 1)th and nth Fourier modes of a periodic
flow.

The Karhunen–Loève decomposition (3.2) can be shown to be optimal for the
reference simulation: the corresponding time-averaged energy residual is the smallest
of all expansions with N modes (see for instance Holmes et al. 1998) and hence the
Galerkin approximation (3.2) can be expected to be very efficient for the periodic
flow.

However, this expansion does not resolve the steady solution. Evidently, the long
steady vortex bubble (figure 7a) cannot be spanned by the time-averaged flow
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Figure 6. Karhunen–Loève eigenvalues. The symbols refer to the first eigenvalues λi in de-
pendence of the mode number i=1, 2, . . . , 12 at Re= 100 (�), Re= 150 (�) and Re= 200 (	).

(a)

(b)

(c)

Figure 7. Construction of the shift-mode (c) from the steady solution (a) and the averaged
flow (b) at Re= 100. The flow field is visualized as in figure 5.

with a short bubble and the wave-like Karhunen–Loève modes. This restriction
has important implications for the Galerkin model, as will be further elaborated in
subsequent sections:

(i) the fixed point of the Galerkin model is the averaged flow u0 as opposed to
the correct steady Navier–Stokes solution us (see § 4.3);

(ii) the predicted transient time from the fixed point to the limit cycle is much too
long (see § 4.3);

(iii) the Galerkin model is predisposed to a structural instability (see § 2);
(iv) the Galerkin model exhibits a strong Re sensitivity (see Deane et al. 1991).
In other words, the price for the efficient low-dimensional description of the

reference simulation is a low accuracy for transients and for a variation in the
Reynolds number.

A natural extension of the Galerkin approximation for transient flow is the inclusion
of an additional vector pointing from the steady Navier–Stokes solution us to the
Karhunen–Loève space defined by (3.2). The steady solution is computed with
a Newton iteration employing the discretized steady Navier–Stokes equation. The
new phase-space direction is constructed in the following Gram–Schmidt procedure
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starting from the mean-field correction u0 − us:

ua
� := u0 − us, (3.6a)

ub
� := ua

� −
N∑

i=1

(
ua

�, ui

)
Ω

ui , (3.6b)

u� :=
ub

�∥∥ub
�

∥∥
Ω

. (3.6c)

The field u� will be called the shift-mode, since it represents the ‘shift’ of the short-
term averaged flow away from the Karhunen–Loève space. Figure 7 illustrates the
construction of this mode.

This shift-mode can formally be considered as the (N + 1)th expansion mode
uN +1 := u� in a generalized Karhunen–Loève decomposition. By construction,
{ui}N+1

i=1 remains an orthonormal system, i.e. (ui , uj )Ω = δij for all i, j = 1, 2, . . . , N+1,
where δij denotes the Kronecker symbol.

Effectively, the shift-mode is a normalized mean-field correction. This correction
ua

� is symmetric with respect to the x-axis and is hence orthogonal to odd-numbered
Karhunen–Loève-mode pairs with anti-symmetry, i.e. u1,2, u5,6, etc. Additionally, ua

� is
nearly orthogonal to the even-numbered mode pairs. These modes can be considered
as travelling waves on a slowly varying shift-mode in the downstream direction, i.e.
the contributions of two alternating vortices almost annihilate each other. Thus, the
remaining Gram–Schmidt corrections, represented by the inner products with u3,4,
u7,8, etc., are the order of 10−3.

The generalized Karhunen–Loève decomposition is expressed by

u(x, t) ≈ u[N+1] :=

N+1∑
i=0

ai(t) ui(x), (3.7)

where a0 := 1 — following a convention of Rempfer (1991) (see also Rempfer &
Fasel 1994a, b). The Galerkin system is derived from (3.7) with a standard Galerkin
projection on the Navier–Stokes equation (3.1b). Following Deane et al. (1991) and
Ma & Karniadakis (2002), the Galerkin projection of the pressure term is found to be
negligible. This omission has been justified by validating Galerkin models with and
without a pressure term against the direct numerical simulations and by monitoring
the neglected pressure term. The Galerkin projection of the remaining acceleration,
convection, and dissipation term yields the Galerkin system

d

dt
ai =

1

Re

N+1∑
j=0

lij aj +

N+1∑
j,k=0

qijkajak for i = 1, . . . , N + 1 (3.8)

with coefficients lij := (ui , �uj )Ω and qijk := (ui , ∇ · (uj uk))Ω . The Galerkin
approximation (3.7) and the Galerkin system (3.8) constitute the generalized empirical
Galerkin model.

3.3. Invariant-manifold reduction

In this subsection, the Galerkin system is reduced to the dynamics on an invariant
manifold. This reduction exploits the stability characteristics of the cylinder wake. The
flow becomes unstable in a supercritical Hopf bifurcation (Sreenivasan, Strykowski &
Olinger 1987) and remains governed by an oscillatory instability of the steady
solution over the entire laminar shedding regime. The stability spectrum consists
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of a single complex-conjugate pair of eigenvalues with positive growth rate whereas
the remaining eigenvalues represent strongly damped eigenmodes (Jackson 1987;
Zebib 1987; Noack & Eckelmann 1994b). The system reduction follows a recipe of
synergetics (Haken 1983, § 7) in which the unstable eigenmode is considered as an
‘active’ degree of freedom while the damped eigenmodes are ‘slaved’ on an invariant
manifold to the active modes.

It may be useful to stress that the proposed reduction deviates, in some aspects,
from the standard centre-manifold reduction for the supercritical Hopf bifurcation as
described by Guckenheimer & Holmes (1986), and as applied to the cylinder wake by
Copeland & Noack (2000). In particular, the Reynolds-number unfolding near the
onset of oscillations is sacrificed targeting a more accurate description at the highly
supercritical Reynolds numbers. In a similar spirit, only a linear transformation is
employed to simplify the Galerkin system. No nonlinear transformation is carried out
to reduce the number of nonlinear terms, as in some other centre-manifold studies.

The reduction is performed in five steps:
(i) Computation of the steady solution as of the Galerkin system (3.8).
(ii) Linear stability analysis of the steady solution. A Jordan form decomposition of

the linearized Galerkin system (3.8) at as yields the eigenmodes Φ i with eigenvalues
σi + iωi , where σi is the growth rate, ωi is the circular frequency, and i is the
imaginary unit. These eigenmodes are generally not mutually orthogonal. However,
they are linearly independent, and form a state-space basis under generic conditions
(a non-degenerate spectrum).†

(iii) Coordinate change via a linear transformation. The Fourier coefficients can be
expressed as a linear expansion with the eigenmodes Φ i ,

a = as +

N+1∑
i=1

biΦ i ,

and the autonomous system for the normal coordinates bi has the same form as the
original system,

d

dt
bi =

N+1∑
j=1

lNF
ij bj +

N+1∑
j,k=1

qNF
ijk bjbk for i = 1, 2, . . . , N + 1.

The coefficients lNF
ij and qNF

ijk can be derived from the Galerkin system (3.8). Note
that the summation does not include j = 0 or k = 0 and that (b1, b2, . . . , bN+1) = 0 is
a fixed point by construction.
In compact vector notation, the evolution equation can be expressed by

d

dt
b = f NF(b),

where b := (b1, b2, . . . , bN+1) and f NF summarizes the components of the linear and
quadratic term.

(iv) Invariant-manifold approximation. This approximation is based on the
decomposition of the normal coordinates into two active coordinates

ba = G[b] := (b1, b2, 0, . . . , 0),

† In the non-generic case of higher-order eigenvalues, the basis may comprise Jordan chains of
generalized eigenvectors, instead of eigenvectors alone.
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and the remaining slaved coordinates

bs = H [b] := (0, 0, b3, . . . , bN+1).

Thus, the active (respectively, slaved) coordinates correspond to unstable (respectively,
stable) phase-space directions, similar to the illustrating example of § 2. The slaved
coordinates are expressed as functions of the active ones. The lowest non-trivial
Taylor expansion of the invariant manifold is given by a quadratic form,

bi = hi11b
2
1 + hi12b1b2 + hi22b

2
2 for i = 3, . . . , N + 1.

The coefficients hi11, hi12, hi22 are derived from a consistency condition which
minimizes the deviation between the original and reduced system (see for instance
Guckenheimer & Holmes 1986, § 3.2, equation 3.2.16). The resulting manifold is
denoted by bs = h(ba)

(v) Invariant-manifold system. The resulting two-dimensional system is expressed
by

d

dt
ba = G[ f NF(ba + h(ba))].

Detailed descriptions can be found in many textbooks and reports (see for instance
Guckenheimer & Holmes 1986; Holmes et al. 1998; Copeland & Noack 2000). These
sources also contain the derivation of the Landau equation from the invariant-
manifold model by a nonlinear transformation.

3.4. Mean-field reduction

In this subsection, a mean-field ansatz is pursued as a physical system-reduction
approach. Physical approaches are based on (intuitive) simplifications of the solution
ansatz, whereas mathematical methods aim to derive these simplifications from the
full evolution equation and small parameters. The mean-field model provides both an
additional context and a justification for a minimal generalized Galerkin model and
for the invariant-manifold reduction of the previous subsection.

Following the basic premises of mean-field theory in Stuart (1958, 1971), a Galerkin
approximation is constructed with a basic mode u0, with a basis for the oscillatory
fluctuation (first harmonic) u1, u2, and with the Reynolds-stress effect of the
fluctuation on the mean-field correction u�. The ansatz is represented by

u = u0 + a1u1 + a2u2 + a�u�. (3.9)

In mean-field theory, the steady solution is the basic mode u0, the oscillation modes
u1, u2 are (essentially) the real and imaginary part of the associated most unstable
eigenmode, and the shift-mode u� is derived from a linearized Reynolds equation.
In the present study, the higher harmonics are neglected, as in mean-field theory. In
contrast to mean-field theory, the ansatz is considered as a perturbation of the limit
cycle as opposed to a perturbation of the steady solution. In this context, the mean
flow is taken as the basic mode, the oscillatory modes are the first two Karhunen–
Loève modes, and the shift-mode is geometrically constructed from knowledge of the
steady solution and averaged flow (see § 3.2).

The dynamics of the Fourier coefficients are derived with a standard Galerkin
projection on the Navier–Stokes equation. This projection leads to

d

dt
ai =

1

Re

3∑
j=0

lMFM
ij aj +

3∑
j,k=0

qMFM
ijk ajak for i = 1, 2, 3, (3.10)
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where a� is identified with a3. This system is the generalized Galerkin model with
N = 2 and will be referred to as the minimal Galerkin system.

The minimal Galerkin system is simplified by a Kryloff–Bogoliubov ansatz (see for
instance Jordan & Smith 1988) for the oscillatory solution,

a1 = A cos ωt, (3.11a)

a2 = A sin ωt, (3.11b)

a� = B. (3.11c)

A minus sign may need to be added on the right-hand side of (3.11b) to be consistent
with the direction of rotation of the minimal Galerkin system (3.10). In the limit
cycle, the shift-mode amplitude vanishes, B = 0, and the oscillation amplitude A and
frequency ω are constant. In non-equilibrium conditions, B remains relatively small
and A, B , and ω are considered as slowly varying functions of time compared to
the period of oscillation. Formally, the assumed slow variation can be expressed by
A= A(εt), B =B(εt), ω =ω(εt), where ε is a small parameter.

This parameter will be estimated below from the Landau model (see for instance
Landau & Lifshitz 1987, § 26). The equations for the amplitude A and the phase φ of
the supercritical Hopf bifurcation considered are given by

dA/dt = σ1A − βA3, dφ/dt = ω1 + γA2

with the positive growth rate σ1 and the frequency ω1 of the most unstable linear
stability eigenmode, the positive Landau constant β , and the nonlinearity parameter γ .
The Landau model is assumed only to describe the transient phase and no assumptions
on the Reynolds-number dependence of the stability eigenvalue λ= σ1 ± iω1 and the
nonlinearity parameters β , γ are implied – in complete analogy to the invariant-
manifold model. The amplitude and time are normalized to yield a final amplitude
and initial frequency of unity. This normalization leads to the amplitude equation

dA/dt = α (A − A3),

where A is the normalized amplitude and α := σ1/ω1. A linearization around the
limit cycle with the Taylor expansion A = 1+A′ +O(A′2) leads to the first variational
form for the amplitude perturbation A′,

dA′/dt = −2αA′.

The damping rate ε := 2 α = 2σ1/ω1 can be taken as a good a priori representation
of the small parameter.

According to the Kryloff–Bogoliubov ansatz, the left-hand side of (3.10) at i = 3 is
of order εB and can be neglected. Thus, averaging the third equation of the minimal
Galerkin system over one period yields

B = B0 + cA2, (3.12)

where

B0 = −c0/cB, c = −cA/cB,

c0 = qMFM
300 +

1

Re
lMFM
30 , cA = 1

2

(
qMFM

311 + qMFM
322

)
, cB = qMFM

303 + qMFM
330 +

1

Re
lMFM
33 .

Equation (3.12) defines a paraboloid in the three-dimensional phase space, a1, a2, a3.
This paraboloid is tangent to the (a1, a2)-plane at the predicted fixed point B = B0,
A = 0 and characterizes how the shift-mode amplitude B is slaved to the oscillation
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amplitude A. The paraboloid is the analogue of the invariant manifold and depends on
the Reynolds number, in contrast to the quadratic invariant-manifold approximation
near the Hopf bifurcation. It is worthwhile to note that the invariant-manifold
reduction and mean-field model are identical for phase-invariant dynamics of a single
harmonic (see Noack & Copeland 2000).

The evolution equation of A is derived from first two equations of the minimal
Galerkin system (3.10) as follows. Differentiation of A2 = a2

1 + a2
2 with respect to

time yields A dA/dt = a1da1/dt + a2da2/dt . Substituting the time derivatives of the
Fourier coefficients from (3.10), inserting the Kryloff–Bogoliubov ansatz (3.11a, b)and
averaging over one period yields

d

dt
A= σBA, (3.13)

where

σB = b0 + b�B,

2b0 = qMFM
110 + qMFM

220 + qMFM
101 + qMFM

202 +
1

Re

(
lMFM
11 + lMFM

22

)
,

2b� = qMFM
113 + qMFM

223 + qMFM
131 + qMFM

232 .

We shall not pause to derive the frequency equation and the interested reader is
referred to two methods in Noack & Copeland (2000) and Copeland & Noack (2000).

The behaviour of the mean-field model can easily be inferred from the constitutive
equations (3.12), (3.13). The fixed point is given by

As = 0, Bs = B0. (3.14)

The growth rate of the infinitesimal perturbation is defined as (3.13),

σs = b0 + b�B0. (3.15)

Hence, the characteristic time for a transient from the fixed point to the limit cycle
can be estimated as 1/σs . The limit cycle is defined by a vanishing growth of the
oscillation amplitude, σB = 0, i.e.

A∞ =

√
B∞ − B0

c
, (3.16a)

B∞ = − b0

b�

. (3.16b)

The form of the proposed mean-field model (3.9), (3.11), (3.12), (3.13) is consistent
with weakly nonlinear theories for the onset of a soft bifurcation. The Landau
equation, for instance, is obtained by an elimination of the shift-mode amplitude,

d

dt
A= σs A − βA3, (3.17)

with the initial growth rate σs and the Landau constant β = −b0c. Similarly, the more
general mean-field equations by Stuart (1958) are obtained by a translation of the
shift-mode equation.

Note that the mean-field model presented here is derived for a small, non-
equilibrium deviation of the limit cycle. A priori, the model cannot be expected
to describe the transients far away from the limit cycle. In addition, neglecting the
higher harmonics can only be justified a posteriori based on the simulation results.
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Figure 8. Galerkin attractor and Navier–Stokes attractor at Re= 100. The first two coefficients
(a1(t), a2(t)) of the periodic Galerkin solution are shown at discrete times. The attractors of
Galerkin models A (�) and B (�) are very similar. The solid line represents the direct numerical
simulation.

4. Galerkin model
The effect of the shift-mode is the focus of this section. The discussion provides

a comparison of Galerkin model A without the shift-mode, representing the state-of-
the-art benchmark (e.g. following Deane et al. 1991), and Galerkin model B with the
shift-mode. In other words, models A and B are based on the standard Karhunen–
Loève decomposition (3.2) and on the generalized decomposition (3.7), respectively.
The number of Karhunen–Loève modes is N = 8 and the Reynolds number is 100
in agreement with a parameter choice of Deane et al. (1991). In § 4.1 and § 4.2, the
attractor and associated modal energy-flow cascade are considered. In § 4.3 and § 4.4,
the respective transient dynamics and the Reynolds-number dependence are studied.

4.1. Periodic solution

Both Galerkin models considered have asymptotically stable limit cycles. The
corresponding periodic solutions are shown in figure 8. The Fourier coefficients
of the higher modes resolve higher harmonics of the dynamics. This behaviour has
already been described by Deane et al. (1991) for laminar vortex shedding and by
Ma & Karniadakis (2002) for transitional vortex shedding.

The shift-mode amplitude of model B vanishes and the periodic solutions are almost
identical. Hence, the generalization for transient behaviour has negligible effect on
the attractor. This behaviour is to be expected since the shift-mode is orthogonal to
the attractor and its amplitude should vanish by construction. The same conclusions
have been reached by Noack, Papas & Monkewitz (2002) in equivalent models of
the Kelvin–Helmholtz vortices in a laminar shear layer. Summarizing, the accuracy
of Galerkin models A and B is comparable for the periodic solution of the reference
simulation where the shift-mode plays no role.

4.2. Energy-flow analysis

The modal energy-flow cascade of the periodic flow is particularly useful in the
identification of the energetic role of individual modes. A straightforward energy-flow
analysis (Rempfer 1991; Noack et al. 2002) yields an energy-balance equation for the
ith mode. In the following, 〈 〉 represents the time average, so that u0 = 〈u〉 is the
mean flow, and u′ = u − u0 is the fluctuation. In addition, the contribution of the ith
mode to the production, convection, transfer term, and dissipation are denoted by Pi ,
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Figure 9. Modal energy-flow analysis of the periodic Navier–Stokes solution at Re= 100. The
modal production Pi (�), convection Ci (�), transfer term Ti (�), and dissipation term Di

(	) from (4.2) are shown as functions of the mode index i. These energy terms are normalized
with the total averaged turbulent kinetic energy K. The reciprocal of this normalized value
indicates the number of time units to produce or dissipate the energy content of the domain.

Ci , Ti , and Di , respectively. We neglect the pressure-work term in agreement with the
simplified Galerkin projection. The investigation is carried out on the Navier–Stokes
attractor, i.e. the properties of the Karhunen–Loève decomposition,

〈ai〉 = 0 and 〈aiaj 〉 = λiδij , (4.1)

are employed. Then, the energy-flow balance for the ith mode yields

0 = Pi + Ci + Ti + Di (4.2)

where

Pi = 〈(ai ui , ∇ · [u′ u0])Ω〉,
Ci = 〈(ai ui , ∇ · [u0 u′])Ω〉,
Ti = 〈(ai ui , ∇ · [u′ u′])Ω〉,

Di =
1

Re
〈(ai ui , 	u′)Ω〉.

These terms can easily be expressed in terms of the Fourier coefficients using (3.2),
(3.8), (4.1):

Pi = qii0 λi , (4.3a)

Ci = qi0i λi , (4.3b)

Ti =

N∑
j,k=1

qijk〈aiajak〉, (4.3c)

Di =
1

Re
liiλi . (4.3d)

Of course, the equality sign in (4.3c) is correct only in the limit as N → ∞.
Figure 9 displays the modal energy-flow terms. The two von Kármán modes u1,2

are responsible for more than 99% of the total production. This energy flow is
partially convected out of the domain, partially dissipated by these modes, and
partially transferred to higher modes by nonlinearity. The energy flow to modes u3,4
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is partially dissipated in these modes and partially transferred to modes u5,6 via
interaction between u1,2 and u3,4, and so on. This behaviour is reminiscent of the
Kolmogorov cascade in which energy flows from the large-scale modes to the small-
scale ones (see for instance Landau & Lifshitz 1987, chap. 3). The same behaviour
has also been observed by Noack et al. (2002) in shear layers and by Rempfer (1991)
in transitional boundary layers.

The modal energy-flow cascade represents an amplitude-damping mechanism, i.e.
the higher harmonics absorb the excess energy production by modes u1,2. If the
Galerkin system is truncated too severely, the energy-flow cascade cannot reach the
small-scale modes. In this case, the oscillation amplitude is either too large, for
instance at N = 4, or it explodes at N = 2. Thus, the modal energy-flow analysis
explains reported truncation errors by Deane et al. (1991).

4.3. Transient solution

Here, the transient behaviour of Galerkin models A and B is compared with a global
linear stability analysis of the steady solution and with a direct numerical simulation.

The fixed point of Galerkin model A is numerically observed to be very close to the
origin as ≈ 0. This fixed point corresponds approximately to the averaged flow u0.
This prediction is not physical, since the steady solution us has, for instance, a much
longer vortex bubble than the mean flow u0 (see figure 7). The reason can be traced
back to the different spatial properties of the Karhunen–Loève and the mean-flow
modes. Substituting as = 0 in (3.8) yields the terms Re−1li0+qi00 on the right-hand side.
Some of these terms vanish for reasons of symmetry and the remaining coefficients, li0,
qi00, are numerically found to be small. From a physical perspective, these coefficients
are expected to be small since they represent projections of the mean-flow Navier–
Stokes terms ν�u0 and −∇ · (u0u0) with a slow streamwise variation onto the nearly
orthogonal Karhunen–Loève modes with an oscillatory streamwise behaviour.

Galerkin model B reproduces the steady Navier–Stokes solution us as fixed point.
This reproduction is not surprising since the generalized Galerkin ansatz (3.7)
incorporates the steady Navier–Stokes solution in its phase space by construction
and the Galerkin projection preserves the associated fixed-point property. The
fixed point in phase space is well-approximated by as = −‖u0 − us‖Ω êN+1, where
êN+1 := (0, 0, . . . , 0, 1) denotes the unit vector in the shift-mode direction.

Figure 10 displays the transient solution of Galerkin model B from the
fixed point to the limit cycle. The Fourier coefficients of the steady and periodic
Navier–Stokes solution are displayed in the same figure. The transient is seen to stay
near a paraboloid in agreement with the mean-field prediction (see § 3.4). This aspect
is investigated later (see § 5). The transient solution of Galerkin model A remains in
the a� = 0 plane by construction.

The transient times of Galerkin models A and B are compared with a numerical
simulation and a global linear stability analysis in figure 11. The initial condition of the
simulation at time t = 0 is given by u = us +0.01u1. The initial conditions of Galerkin
models A and B are the corresponding Galerkin approximations a = as + 0.01ê1. It
should be noted that the fixed points as of both Galerkin systems differ by the
mean-field correction.

In addition, a global linear stability analysis is carried out in order to elucidate
the relationship between the simulation and the most amplified infinitesimal
perturbation. The stability analysis predicts that the steady solution us of the
Navier–Stokes equation is unstable at Re > 47 (Jackson 1987; Zebib 1987). The most
amplified perturbation u′ is described by the first eigenmode f 1 and its associated
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Figure 10. Transient solution of the Navier–Stokes equation (solid circles) and Galerkin
model B (solid curve). The figure shows (a1(t), a�(t)) of a transient trajectory starting close to
the steady Navier–Stokes solution corresponding to the fixed point in the Galerkin system.
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Figure 11. Transient solutions of Galerkin model A (�) and B (�). These transients are
compared with linear global stability analysis of the Navier–Stokes equation (thin straight
line) and the corresponding Navier–Stokes simulation (thick line). The figure displays the
turbulent kinetic energy of the fluctuation around the phase-averaged flow in dependency of
the time.

complex-conjugate pair of eigenvalues σ1 ± iω1, where σ1 represents the growth rate,
ω1 the angular frequency and i the imaginary unit. The fluctuation is expressed by the
real part of the normal-mode ansatz u′ = exp [(σ1 ± iω1) t] f 1(x). The growth rate of
the corresponding turbulent kinetic energy KLSA = (1/2) ‖u′‖2

Ω is given by 2σ1.
The equivalent instantaneous energy quantities of Galerkin models A and B

are expressed by KA,B = (1/2)
∑N

i=1 a2
i . Note that the shift-mode amplitude a� is

not included, since u = us + a� u� is considered as the slowly varying base flow.
Figure 11 includes the temporal evolution of the turbulent kinetic energy predicted
by linear stability theory, KLSA = 0.00005 exp [2σ1t], by Galerkin system A, KA,
and by Galerkin system B, KB. The energy growth of linear stability theory and of
the numerical simulation are comparable. However, the transient time of Galerkin
system A is more than one hundred shedding periods and thus significantly over-
predicted. Galerkin system B is in closer agreement with the numerical simulation.
Since the Karhunen–Loève modes and the eigenmodes of the stability analysis are
quantitatively quite different (see § 5.4), no exact agreement between the generalized
Galerkin system and the stability analysis can be expected.
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Galerkin models A and B resolve quite different amplitude-selection mechanisms.
The mechanism of model B agrees well with mean-field prediction, i.e. the relative
amplitude growth (dA/dt)/A= σB is large near the fixed point and almost vanishes
in the limit-cycle plane a� = 0. In contrast, the transient of model A starts in the
limit-cycle plane. The initial growth of the turbulent kinetic energy is based on the
small excess energy produced by the von Kármán modes u1,2. Initially, this energy
flow cannot be discharged to the higher harmonics, since the higher harmonics are
excited by a nonlinearity close to the saturation.

The strength of the amplitude-selection mechanism is strongly correlated with the
robustness of the Galerkin method to small modelling errors. The weak amplitude-
selection mechanism of model A with a long transient time scale is physically incorrect
and gives rise to a nearly structurally unstable condition. A small modelling error
which causes a small additional term in the Galerkin system may also give rise to
a Galerkin solution with a large amplitude error, as was illustrated in the context
of the motivating example in § 2. In addition, the domain of attraction is limited
to a neighbourhood of the limit cycle. In contrast, Galerkin model B has a strong
preference towards the limit-cycle amplitude and numerical studies indicate that the
limit cycle is globally stable. The mechanism of model B is detailed for the reduced
models of § 5.

4.4. Reynolds-number dependence

In this subsection, the Reynolds-number dependence of Galerkin models A and B is
studied.

Figure 12 displays the oscillation amplitude and Strouhal frequency St = Df/U

(f : frequency) of the Galerkin systems and the Navier–Stokes simulations. At the
reference Reynolds number, both Galerkin systems reproduce the simulations well.
However, the critical Reynolds number of Galerkin system A is 80, far larger than
the correct value of 47. With a similar model, Deane et al. (1991) also report a Hopf
bifurcation near Re ≈ 80. The amplitude of this system jumps to unrealistically large
amplitudes at Re =105. The model of Deane et al. (1991) ceases to predict stable
oscillations at Re > 120. The difference may be related to the significantly larger
computational domain which Deane et al. employ for their Galerkin model. Finally,
the slope of the Strouhal–Reynolds number relationship of Galerkin system A has
the wrong sign.

The Reynolds-number variation is more realistically predicted by Galerkin system
B with the shift-mode. Galerkin system B accurately predicts the critical Reynolds
number of 47 and the amplitude evolution is in good agreement with simulation.
The Strouhal number increase with the Reynolds number is qualitatively correctly
predicted. Moreover, this system is more robust and less prone to divergent
solutions. Indeed, the reproduction of the amplitude–Reynolds number relationship
is surprisingly good.

However, not all aspects of Galerkin model B are accurately predicted. For
instance, the Strouhal–Reynolds number relationship is only qualitatively correct.
The increasing Strouhal number with the Reynolds number is caused by a decrease
in the streamwise spacing of the von Kármán vortices. This change of the spatial
vortex street structure leads to corresponding changes in the Karhunen–Loève modes.
The Karhunen–Loève decomposition at one Reynolds number can resolve only a
fraction of the turbulent kinetic energy at another Reynolds number (Deane et al.
1991). Nonetheless, Galerkin model B is more robust to these kinds of changes. This
robustness is linked to the shift-mode. This mode not only plays a predominant role
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Figure 12. Reynolds-number dependence of Galerkin model A (�) and B (�) in comparison
with direct numerical simulation (∗): the Strouhal number (a) and the amplitude of oscillation

A :=
√

〈a2
1 + a2

2〉 (b).

in the amplitude-selection mechanism, but it also resolves the changes of the steady
solution and the averaged flow with the Reynolds number. The shift-mode amplitude
a� controls, for instance, the vortex-blob length of the base flow us + a�u� (see
figure 7).

5. Reduced Galerkin models
In this section, three reduced Galerkin models are discussed, the minimal model

in § 5.1, the invariant-manifold model in § 5.2, and the mean-field model in § 5.3. All
system reductions are based on the generalized Galerkin model B with the shift-mode.
The system-reduction possibility without the shift-mode is limited to the minimum
mode number of 6 – in agreement with Deane et al. (1991). Finally, in § 5.4, the
difference between initial and final vortex shedding is assessed in the framework of a
global linear stability analysis. This comparison leads to a hybrid model in which the
generalized Karhunen–Loève decomposition is enhanced by a stability eigenmode.

5.1. Minimal Galerkin model

In this section, the minimal Galerkin model with two Karhunen–Loève modes and the
shift-mode is investigated. Figure 13(a) displays a transient trajectory from the fixed
point to the limit cycle. The trajectory approximately agrees with that of the original
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Figure 13. Reduced Galerkin models: the minimal 3-mode model (a), the invariant-manifold
model (b), and the mean-field model (c). (a) and (b) show (a1(t), a�(t)) of a transient trajectory
starting close to the fixed point, (c) indicates the predicted envelope. The steady and periodic
solution of the direct numerical simulation are indicated by stars.

Galerkin model in figure 10. The fixed points of the original and minimal model are
virtually identical. However, the oscillation amplitude in the minimal model is 10%
too large and the plane of oscillation lies above the a� = 0 plane. This deviation is
caused by an interruption of the energy-flow cascade with the neglecting of higher
harmonics in the model. Since the modes ui , i = 3, 4, . . . , cannot absorb the excess
energy produced by the von Kármán modes u1,2, the latter modes grow beyond the
correct value until the mean-field deformation a� > 0 can absorb this excess energy
via the transfer term. The neglected higher harmonics also lead to the overshoot of
the transient on the a� > 0 side of the limit-cycle plane. The damping effect of the
higher modes is not resolved in the minimal model.

It may be worthwhile to note that the growth rate of the oscillation amplitude,
σB = (dA/dt)/A, is nearly a linear function of the distance to the limit-cycle plane
a� = 0 – as predicted by mean-field theory in § 3.4. In the limit-cycle plane, σB > 0.
Solutions projected in this plane spiral outwards without bound. This explains why a
reduced Galerkin model A with N = 2 leads to diverging solutions.

5.2. Invariant-manifold model

In this subsection, an invariant-manifold reduction of the original Galerkin model B
is performed. Figure 13(b) displays a transient trajectory from the fixed point to the
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periodic solution. The fixed point is not affected by the invariant-manifold reduction.
However, the slaving to the invariant manifold prevents the overshoot observed in
the original and minimal Galerkin model. The accuracy of the periodic invariant-
manifold solution is somewhat better than the mean-field solution. This behaviour
can be explained in the framework of the modal energy-flow cascade: The algebraic
representation of the invariant manifold is derived from the original model with eight
oscillatory modes. As noted earlier, that model resolves the energy flow from the
first to higher harmonics. Thus, the excess energy produced by the first harmonics is
balanced by the energy-flow cascade. That prediction is qualitatively preserved when
the dynamics of higher harmonics is replaced by an algebraic dependence on the
leading harmonic in the invariant manifold.

It is worthwhile to note that the shift-mode is the crucial enabler of an invariant-
manifold model with an acceptable accuracy. Without the shift-mode, the invariant-
manifold model diverges, since the second-order inertial-manifold ansatz can resolve
only a small fraction of the energy transfer from the von Kármán modes to the higher
modes. However, a higher-order polynomial representation of the invariant manifold
can be expected to accommodate a realistic counterpart for Galerkin model B.

5.3. Mean-field model

In this subsection, the mean-field model of § 3.4 is studied. Figure 13(c) displays
the mean-field paraboloid as an envelope of the transient from the fixed point
to the periodic solutions. Both the steady and periodic solutions of the model
match well with the corresponding solutions of the minimal Galerkin system. The
reason for the good agreement rests on the fact that the minimal Galerkin system
hardly changes following a rotation around the a�-axis. Thus, the assumed circular
limit cycle postulated by the Kryloff–Bogoliubov ansatz (3.11) is consistent with the
minimal model. However, the transient a�-overshoot is prevented by the mean-field
paraboloid. The ‘free’ trajectory of the minimal Galerkin system differs noticeably
from the ‘slaved’ mean-field solution. This difference indicates that the ansatz of
slowly varying amplitude dynamics is only a coarse approximation. In fact, figure 11
shows that the time scale for the transient dynamics is only one order of magnitude
larger than the period of oscillation. In other words, the small parameter ε of § 3.4 is
approximately 0.3. The relative overshoot of a� compared to the fixed point distance
‖as‖ is also of order ∼ 0.1.

5.4. Linear stability analysis and empirical Galerkin models

In this subsection, the relationship between the empirical Galerkin models and the
global linear stability analysis of the steady solution are studied. This comparison will
elucidate the difference between the growth rates of the Navier–Stokes equation and
of the model. The study will lead to an augmented Galerkin model. In the following,
the Reynolds number is Re = 100 for all data considered.

By construction, the Karhunen–Loève decomposition is the optimal basis for the
periodic solution with respect to the energy resolution. The first two Karhunen–Loève
modes resolve 96% of the total fluctuation energy. However, the oscillatory dynamics
associated with the linear instability from the steady solution is only qualitatively
represented by the Galerkin model. In contrast, linear stability analysis does provide –
again by construction – an accurate basis for the initial part of the transient with its
first most unstable complex eigenmode f 1(x).

The stability analysis predicts an initial growth rate σ1 = 0.1439 and an initial
Strouhal number St1 = 0.1346 in good agreement with the simulation. Figure 14(a)
displays the real part of the first complex eigenmode. The imaginary part is
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(a)

(b)

Figure 14. Eigenmode of linear stability analysis (a) in comparison with the first
Karhunen–Loève mode (b). The flow field is visualized as in figure 5.

approximately a streamwise phase shift of the real part. This eigenmode is compared
with the first Karhunen–Loève mode in figure 14(b). Both modes are qualitatively
similar and describe an oscillatory wake. However, the characteristic streamwise
wavelength of the eigenmode is longer than the corresponding length of the
Karhunen–Loève mode. In addition, the initial Strouhal number St1 is about 21%
smaller than its asymptotic value. This inverse relationship between streamwise wake
structure and decreased Strouhal number is intuitively obvious and detailed in a
phenomenological wake model by Ahlborn, Seto & Noack (2002).

The real and imaginary parts of the first complex eigenmode f 1(x) may be employed
to construct two expansion modes, us

1, us
2. Without loss of generality, these modes are

assumed to be orthonormalized. The Galerkin approximation for the fluctuation

u′ = a1us
1 + a2us

2 (5.1)

resolves – by construction – exactly the initial part of the transient, but only 41%
of the turbulent kinetic energy of the periodic vortex shedding. The reason for this
low final resolution is clearly illustrated by figure 14: the fluctuation amplitude of
the eigenmode is small before the stagnation saddle point of the steady solution (see
figure 7a) and, thus, hardly resolves the near field dynamics. In contrast, the first two
Karhunen–Loève modes describe the vortex shedding also in the near field.

In complete analogy to § 5.1, a three-dimensional Galerkin model is constructed
based on the mean flow, the fluctuation (5.1), and a shift-mode us

�,

u = u0 + a1us
1 + a2us

2 + a�us
�. (5.2)

This shift-mode is obtained from the mean-field correction after the Gram–Schmidt
orthonormalization with respect to the new Galerkin ansatz. The shift-modes of this
subsection and of § 3.2 are almost identical, since the Karhunen–Loève modes and
stability eigenmodes are nearly orthogonal to the steady and averaged flow. In analogy
to the generalized Karhunen–Loève ansatz (3.7), all modes of (5.2) are divergence free
since stability eigenmodes satisfy the incompressibility condition and the subsequent
operations preserve this property.

The minimal Galerkin system is derived in a standard Galerkin projection. This
system accurately yields the fixed point as in previous Galerkin models. However,
in contrast to the empirical models, the initial growth rate and the frequency are
accurately reproduced with an error of less than 1%. The good agreement with
the actual growth rates corroborates that the omission of the pressure term in the
Galerkin model is also legitimate for the transient dynamics and not only a good
approximation for the periodic flow.
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Figure 15. Transient solution of the Navier–Stokes equation (�) and the minimal Galerkin
model based on the stability eigenmodes of the steady solution (solid curve). The solutions are
visualized as in figure 10.
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Figure 16. As figure 11, but with transient solutions the minimal Galerkin model (	), the
mean-field model (�), the hybrid model with Karhunen–Loève and stability eigenmodes (�),
and the enhanced Galerkin model B (�). The symbols mark the corresponding solid curves.

Figure 15 displays a transient solution from the steady solution to the limit cycle.
The growth rate is about three times larger than its counterpart in empirical models.
However, in the post-transient limit cycle, the oscillation amplitude is 50% too small
and the frequency is 15% too low. The amplitude deviation is of the same order
as the unresolved fluctuation energy in the eigenmodes. The oscillation amplitude
is too small because the relative resolution of the energy sinks, namely dissipation
and convection, with ansatz (5.1) is roughly two times higher than the production
as the only energy source. The lower frequency is a direct consequence of a well-
defined convection velocity and the over-predicted streamwise wavelength. Despite
these quantitative discrepancies, figure 15 demonstrates that the ansatz of a Galerkin
model with a shift-mode is surprisingly robust with respect to changes of its expansion
modes.

The different shapes of the initial and final wake structures preclude a uniformly
accurate minimal Galerkin model for the entire transient from the steady to the
periodic solution. Figure 16 displays this compromise in terms of the turbulent kinetic
energy. Of the two three-dimensional Galerkin models, the minimal representation
employing two Karhunen–Loève modes predicts much better the post-transient
fluctuation level whereas the Galerkin model based on (5.2) with the first two stability
eigenmodes agrees much better with the transient growth rate.

In order to combine the strengths of the minimal and stability-eigenmode models,
a hybrid model is constructed with the shift-mode, two Karhunen–Loéve modes, and
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two stability eigenmodes. The corresponding Galerkin ansatz is given by

u = u0 +

2∑
i=1

aiui + a�u� + as	
1 us	

1 + as	
2 us	

2 . (5.3)

The two state-space dimensions of the complex stability eigenmode f 1 are included
in the ansatz (5.3) in analogy to the shift-mode. Here, us	

1 and us	
2 are two additional

modes, obtained from the respective real and complex parts of f 1 after a Gram–
Schmidt orthonormalization with respect to u1, u2 and u�. The new modes can be
considered as the (N + 2)th and (N + 3)th contributions to a further generalization
of the Karhunen–Loève decomposition. It may be noted that the order of including
new state-space dimensions in the orthonormalization process affects (slightly) the
modes and the Fourier coefficients. But this order has no effect on the generalized
Karhunen–Loève space and no effect on the velocity fields predicted by the resulting
Galerkin model. A change of the order corresponds to an orthonormal coordinate
transformation in the Galerkin system.

The hybrid model combines the advantages of both reduced models, i.e. it initially
follows the stability analysis and finally converges to the limit cycle (see figure 16).
The oscillatory amplitude modulation near the limit cycle is reduced in a higher-
dimensional enhanced Galerkin model B with one shift-mode, eight Karhunen–Loève
modes and two stability eigenmodes (see figure 16). The eigenmodes of this enhanced
model are only active during the transient phase like the shift-mode.

6. Conclusions
A simple generalization is proposed for empirical Galerkin models to include

transient behaviour. This modification consists of adding a shift-mode so that the
Galerkin approximation also includes an accurate representation of the unstable
steady solution. For the cylinder wake, the shift-mode leads to the following
improvements compared to the Galerkin model based on the Karhunen–Loève
decomposition alone:

(i) The steady solution of the Galerkin model is also the steady solution of the
Navier–Stokes equation.

(ii) The transient behaviour towards the limit cycle is more realistic. A good
match of the growth rates, however, requires the inclusion of the most unstable
stability eigenmode.

(iii) The range of validity of the Galerkin model with respect to the Reynolds
number is enhanced.

(iv) A potential structural instability of the empirical Galerkin modelling approach
is removed.

(v) Mathematical and physical system-reduction approaches lead to a 3-mode
model. This model can be further reduced to a mean-field-like model with two
degrees of freedom and to a one-dimensional Landau equation for the oscillation
amplitude.

(vi) The generalized Galerkin model reveals two important amplitude-selection
mechanisms in a single framework. One mechanism is based on the mean-field
deformation due to the fluctuation (Stuart 1958). This mechanism is particularly
dominant in the neighbourhood of the steady solution. Another process is the energy
flow from large-scale modes to smaller-scale ones in the spirit of the Kolmogorov
cascade. The role of this process increases with the amplitude of oscillation.
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Similar results may be expected for other absolutely unstable flows. The approach
presented here has also been applied to an empirical Galerkin model of convectively
unstable shear flow. Here, the shift-mode is found to drastically improve the prediction
of transient behaviour (Noack et al. 2002). The system-reduction capability has been
found to be particularly useful for Galerkin-model-based controller design (Gerhard
et al. 2003).

Often, the required unstable steady solution of the Navier–Stokes equation cannot
be computed, for instance in the case of a complex geometry. In this case, one
or more additional modes can be computed from a transient simulation. A good
choice is expected to be the most energetic orthogonal complement with respect
to the Karhunen–Loève decomposition of the attractor. For the cylinder wake, this
approach is found to yield nearly identical results. The inclusion of additional modes
for non-equilibrium behaviour has been found to be more accurate than the inclusion
of transient snapshots for the construction of Karhunen–Loève modes, as suggested
by Khibnik et al. (2000).
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02/2000. Hermann-Föttinger-Institut für Strömungsmechanik, Technische Universität Berlin.

Cottet, G. H. & Koumoutsakos, P. 2000 Vortex Methods – Theory and Practice. Cambridge
University Press.

Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional
models for complex geometry flows: Application to grooved channels and circular cylinders.
Phys. Fluids A 3, 2337–2354.

Dus̆ek, J. 1996 Spatial structure of the Bénard von Kármán instability. Eur. J. Mech. B/Fluids 15,
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